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Abstract - Data mining is most commonly used in attempts 
to induce association rules from transaction data. In the 
past, we used the fuzzy and GA concepts to discover both 
useful fuzzy association rules and suitable membership 
functions from quantitative values. The evaluation for 
fitness values was, however, quite time-consuming. In this 
paper, we thus propose a parallel genetic-fuzzy mining 
algorithm based on the master-slave architecture to extract 
both association rules and membership functions from 
quantitative transactions. The master processor uses a 
single population as a simple genetic algorithm does, and 
distributes the tasks of fitness evaluation to slave 
processors. The evolutionary processes, such as crossover, 
mutation and production are performed by the master 
processor. Both the theoretic analysis and the experimental 
results show that the speed-up of the proposed parallel 
algorithm can increase nearly linear along with the 
number of individuals to be evaluated. 

Keywords: data mining, fuzzy set, genetic algorithm, 
parallel processing, association rule. 

1 Introduction 
  Recently, the fuzzy set theory [26] has been used 
more and more frequently in intelligent systems because of 
its simplicity and similarity to human reasoning [19]. 
Several fuzzy mining algorithms for managing quantitative 
data have also been proposed [8, 15, 20], where the 
membership functions were assumed to be known in 
advance. The given membership functions may, however, 
have a critical influence on the final mining results. Genetic 
algorithms (GAs) [11, 12] have also recently been used in 
the field of data mining since they are powerful search 
techniques in solving difficult problems and can provide 
feasible solutions in a limited amount of time. Hong et al. 
thus proposed a GA-based fuzzy data-mining method [17] 
for extracting both association rules and membership 
functions from quantitative transactions. In that method, the 
fitness evaluation is based on the suitability of derived 
membership functions and the number of large itemsets. 
The evaluation for fitness values is, however, quite time-
consuming. 

 Due to dramatic increases in available computing 
power and concomitant decreases in computing costs over 

the last decade, learning or mining by applying parallel 
processing techniques has become a feasible way of 
overcoming the problem of slow learning. Several parallel 
approaches to speed up the process of data-mining were 
proposed [5, 18, 23]. In addition, some parallel 
architectures for genetic algorithms were also suggested 
[1][7]. They have been applied to solving timetable 
scheduling and discovering classification rules. 

 Among the parallel architectures, the master-slave 
architecture is particularly easy to implement. It also 
usually promises substantial gains in performance [9]. The 
master processor allocates the tasks to the slave processors 
and collects the results from them. It can also do its own 
work if necessary. As mentioned before, the fitness 
evaluation in genetic-fuzzy data mining is usually very 
time-consuming. In this paper, we thus extend our previous 
work [17] by using the master-slave parallel architecture to 
dynamically adapt membership functions and to use them 
to deal with quantitative transactions in fuzzy data mining. 
It is very natural and efficient to design a parallel GA-fuzzy 
mining algorithm based on the master-slave architecture. 
The master processor uses a single population as a simple 
genetic algorithm does, and distributes the tasks of fitness 
evaluation for suitability of membership functions and 
large itemsets to slave processors. The evolutionary 
processes, such as crossover, mutation and production are 
performed by the master processor. We expect that by 
appropriately allocating the tasks among the different types 
of processors, the efficiency of the proposed genetic-fuzzy 
mining algorithm can greatly be raised.  

2 Review of related works 
 Some related works about data mining and genetic 
algorithms are first reviewed below. 

2.1 Data Mining 
 The goal of data mining is to discover important 
associations among items such that the presence of some 
items in a transaction will imply the presence of some other 
items. To achieve this purpose, Agrawal and his co-
workers proposed several mining algorithms based on the 
concept of large itemsets to find association rules in 
transaction data [2, 3, 4, 6]. Srikant and Agrawal then 



proposed a mining method [22] to handle quantitative 
transactions by partitioning the possible values of each 
attribute. Hong et al. proposed a fuzzy mining algorithm to 
mine fuzzy rules from quantitative data [15]. They 
transformed each quantitative item into a fuzzy set and 
used fuzzy operations to find fuzzy rules. Cai et al. 
proposed weighted mining to reflect different importance to 
different items [8]. Each item was attached a numerical 
weight given by users. Weighted supports and weighted 
confidences were then defined to determine interesting 
association rules. Kaya et al. [20] proposed a GA-based 
clustering method to derive a predefined number of 
membership functions for getting a maximum profit within 
an interval of user specified minimum support values.  

2.2 Genetic algorithm 
 Genetic algorithms (GAs) [11][12] have become 
increasingly important for researchers in solving difficult 
problems since they could provide feasible solutions in a 
limited amount of time [14]. They were first proposed by 
Holland in 1975 [12] and have been successfully applied to 
many fields. On applying genetic algorithms to solving a 
problem, the first step is to define a representation that 
describes the problem states. The most common way used 
is the bit string representation. An initial population of 
individuals, called chromosomes, is then defined and the 
three genetic operations (crossover, mutation, and 
selection) are performed to generate the next generation. 
Each chromosome in the population is evaluated by a 
fitness function to determine its goodness. This procedure 
is repeated until a user-specified termination criterion is 
satisfied. As to parallel GA, three types were proposed as 
single-population master-slave Gas, single-population fine-
grained Gas and Multiple-population coarse-grained GAs 
[9]. Among the above three types, the type of master-slave 
parallel GAs consists of a simple structure and uses less 
parameter to control the process of evolution. This type of 
parallel GAs has been successfully applied for solving 
timetable scheduling and discovering classification rules 
[1][7]. In this paper, we will use this parallel architecture to 
fuzzy data mining due to its suitability. 

3 A parallel genetic-fuzzy mining 
framework 

 In [17], we used the fuzzy and GA concepts to 
discover both useful association rules and suitable 
membership functions from quantitative values. The 
proposed approach in that paper is shown in Figure 1, 
where a genetic algorithm was proposed for searching 
membership functions suitable for mining problems and 
then the final best set of membership functions was used to 
mine association rules. 
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 Figure 1: A GA-based approach for fuzzy data mining 

 In this section, a parallel genetic-fuzzy framework 
based on the master-slave architecture is thus proposed to 
speed up the mining process. The proposed framework is 
shown in Figure 2.  

  

Figure 2: The proposed parallel genetic-fuzzy mining 
framework 

 In Figure 2, there are p + 1 processors composed of 
one master and p slaves. Each processor has an identical 
transaction database for mining. Since the fitness 
evaluation process is the most time-consuming part in the 
entire genetic-fuzzy mining process, it is thus processed in 
parallel by the slave processors. The other part is processed 
by the master processor. The parallel genetic-fuzzy data 
mining framework includes two phases, mining 
membership function and mining fuzzy association rules. 
In the first phase, the master and the slaves cooperate to 
gradually discover a set of adaptive membership functions. 
The master processor maintains a population of sets of 
membership functions and performs the genetic operators 
to select, mate and evolve chromosomes. The master 
processor distributes the tasks of fitness evaluation for 
suitability of membership functions and large itemsets to 
slave processors. Each slave processor with an identical 
transaction database then calculates the fitness value of a 
chromosome that is assigned by the master. The evaluation 
results from the slaves are then sent back to the master. The 
master processor then performs the evolutionary processes, 
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such as crossover, mutation and production according to 
the evaluation results collected. After undergoing recursive 
evolutions, a good set of membership functions can be 
obtained. The good set of membership functions is then 
used in the second phase by the master processor to mine 
fuzzy association rules. The second phase is not necessary 
to be processed in parallel since the most time-critical part 
is phase 1. The time complexity analyzed later will show 
this. 

4 Chromosome representation and 
fitness evaluation 

 It is important to encode membership functions as 
string representation for GAs to be applied. Several 
possible encoding approaches have been described in [10, 
21, 24, 25]. In this paper, each set of membership functions 
is encoded as a chromosome and handled as an individual 
with real-number schema.  

 In order to effectively encode the associated 
membership functions, we use two parameters to represent 
each membership function, as Parodi and Bonelli [21] did. 
Membership functions applied to a fuzzy rule set are then 
assumed to be isosceles-triangle functions.  Note that 
other types of membership functions (e.g. non-isosceles 
trapezes) can also be adopted in our method. For coding 
non-isosceles triangles and trapezes, three and four points 
are needed instead of two for isosceles triangles. 

 In order to develop a good set of membership 
functions from an initial population, the genetic algorithm 
selects parent membership function sets with high fitness 
values for mating. Note that the selection of membership 
function sets is performed by the master processor, and the 
evaluation of each membership function set is processed by 
the slave processors. An evaluation function is defined to 
qualify the derived membership function sets. The 
evaluation results are then sent back to the master processor 
to control how the solution space is searched to promote 
the quality of the membership functions. The fitness value 
of a chromosome Cq is defined as follows: 
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where suitability(Cq) is the suitability of the membership 
functions in a chromosome Cq and |L1| is the number of 
large 1-itemsets obtained by using the set of membership 
functions. The suitability is defined according to the two 
factors – overlap ratio and coverage ratio. The overlap ratio 
of two membership functions is defined as the overlap 
length divided by half the minimum span of the two 
functions. The coverage ratio of a set of membership 
functions for an item is defined as the coverage range of the 
functions divided by the maximum quantity of that item in 
the transactions. The suitability factor used in the fitness 
function can reduce the occurrence of the two bad kinds of 

membership functions shown in Figure 3, where the first 
one is too redundant, and the second one is too separate. 
Details can be referred to in [17]. 
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Figure 3: Two bad membership functions 

 Besides, using the number of large 1-itemsets can 
achieve a trade-off between execution time and rule 
interestingness. Usually, a larger number of 1-itemsets will 
result in a larger number of all itemsets with a higher 
probability, which will thus usually imply more interesting 
association rules. The evaluation by 1-itemsets is, however, 
faster than that by all itemsets or interesting association 
rules. It can be further speeded up by the parallel 
processing approach proposed in this paper. 

 Two genetic operators, the max-min-arithmetical 
(MMA) crossover proposed in [13] and the one-point 
mutation, are used in the genetic fuzzy mining framework. 
Note that the genetic operations are performed by the 
master processor. 

5 The proposed parallel genetic-fuzzy 
mining algorithm 

 According to the above description, the proposed 
parallel algorithm for mining both fuzzy association rules 
and membership functions is described below. 

The proposed parallel genetic-fuzzy mining algorithm: 

INPUT: One master processor, p slave processors (p is the 
maximum number of individuals to be evaluated in each 
generation), a body of n quantitative transaction data stored 
in each processor, a set of m items, a support threshold α, 
and a confidence threshold λ. 

OUTPUT: A set of fuzzy association rules with its 
associated set of membership functions. 

STEP 1: Randomly generate a population of individuals 
by the master processor; each individual is a set 
of membership functions for all the m items. 

STEP 2: Encode each set of membership functions into a 
string representation by the master processor. 

STEP 3: Distribute the individuals from the master 
processor to the slave processors. 



STEP 4: Calculate the fitness value of each chromosome 
by each corresponding slave processor by the 
following substeps: 

STEP 4.1: For each transaction datum Di, i = 1 to n, and 
for each item Ij, j=1 to m, transfer the 
quantitative value vj

(i) into a fuzzy set fj
(i) 

represented as: 











+++

jl

i
jl

j

i
j

j

i
j

R
f

R
f

R
f )(

2

)(
2

1

)(
1 .... , 

using the corresponding membership 
functions represented by the chromosome, 
where Rjk is the k-th fuzzy region (term) of 
item Ij, fjl

(i) is vj
(i)’s fuzzy membership value 

in region Rjk, and l (= |Ij|) is the number of 
linguistic terms for Ij. 

STEP 4.2: For each item region Rjk, calculate its scalar 
cardinality countjk on the transactions as 
follows: 
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STEP 4.3: For each Rjk , 1 ≤ j ≤ m and 1≤ k ≤ |Ij|, check 
whether its countjk is larger than or equal to 
the minimum support threshold α. If Rjk 
satisfies the above condition, put it in the set 
of large 1-itemsets (L1). That is: 

L1={Rjk | countjk ≥ α, 1 ≤ j ≤ m and 1 ≤ k ≤ | Ij | }. 

STEP 4.4: Set the fitness value of the chromosome as 
the number of large itemsets in L1 divided by 
suitability(Cq). That is: 
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STEP 5: Send the fitness value f(Cq) of each chromosome 
Cq from each slave processor to the master 
processor. 

STEP 6: Execute the crossover operations on the 
population by the master processor. 

STEP 7: Execute the mutation operations on the 
population by the master processor. 

STEP 8: Distribute the individuals to be evaluated from 
the master processor to the slave processors. 

STEP 9: Calculate the fitness value of each chromosome 
by each corresponding slave processor as in 
STEP 4. 

STEP 10: Send the fitness value f(Cq) of each chromosome 
Cq from each slave processor to the master 
processor. 

STEP 11: Use the defined selection criteria to choose 
suitable individuals for the next generation by 
the master slave. 

STEP 12: If the termination criterion is not satisfied, go to 
Step 6; otherwise, do the next step. 

STEP 13: Use the set of membership functions with the 
highest fitness value for finding all fuzzy large 
itemsets by the master processor. 

STEP 14: Find the fuzzy association rules from the fuzzy 
large itemsets by the master processor. 

 In Steps 13 and 14, our fuzzy mining algorithm 
proposed in [16] can be used to find the results. 

6 Time complexity analysis 
 The time complexities of both the sequential and the 
parallel genetic-fuzzy mining algorithms are first analyzed. 
The speed-up of the parallel mining algorithm is then 
derived. Some notation is first defined as follows: 

p: the number of slave processors (the maximum number of 
individuals to be evaluated); 

n: the number of generations; 
f: the average execution time of calculating the fitness 

value of an individual in each generation; 
g: the average execution time of processing all genetic 

operations during a generation; 
c: the average communication time between a master 

processor and a slave processor during a generation; 
s: the average execution time of mining the association 

rules in the second phase; 
s

aveT : the average execution time of the sequential GA-
fuzzy mining algorithm; 
p

aveT : the average execution time of the parallel GA-fuzzy 
mining algorithm; 

aveS : the average speed-up calculated by s
aveT  over p

aveT . 
 

 The average time complexity of the sequential mining 
algorithm is: 

sgfpnT s
ave ++= )*(*  

 The paralllel mining algorithm can distribute the 
fitness-evaluation tasks to the slave processors. Therefore, 
the execution time for the fitness evaluaion in each 
generation needs only f. The parallel algorithm, however, 
needs additional computation time c between a master 



processor and slave processors. The average time 
complexity of the paralled mining algorithm is thus: 
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 The average speed-up is thus: 
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 In this paper, the fitness evaluation is based on the 
suitability of derived membership functions and the number 
of large 1-itemsets. The entire database must be scanned to 
find the large 1-itemsets. The average evaluation time f is 
thus much larger than the average execution time for 
genetic operations g, especially when the processed dataset 
is large. In addition, since the master only distributes the 
code of a chromosome to a slave and receives a number 
(the evaluation value) from the slave, the communication 
time is thus very little. Therefore, the speed-up can be 
further simplified as the following: 
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 The average evaluation time f includes the time of 
finding large 1-itemsets. The average execution time s of 
mining association rules in the second phase includes 
finding all large itemsets and deriving rules from them. s is 
thus larger than f. However, because the number of items in 
the longest large itemsets is usually small, some pruning 
techniques may be used to reduce the mining time s, and 
the number of generations is usually set at more than one 
hundred, s may thus be much smaller than n*f, especially 
when n is large. In this case, the above speed-up can be 
further simplified as: 
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 Thus, when the number of generations is large, the 
speed-up is nearly linear.  

7 Experimental results 
 In this section, the experiments made to show the 
performance of the proposed approach are described. They 
were simulated in Java on a personal computer with Intel 
Pentium IV 3.2GHz and 512MB RAM. 64 items and 10000 
transactions were used in the experiments. In each data set, 
the numbers of purchased items in transactions were first 
randomly generated. The purchased items and their 
quantities in each transaction were then generated. An item 
could not be generated twice in a transaction. The 
crossover rate pc is set at 0.8, and the mutation rate pm is set 
at 0.01. The minimum support α is set at 400. Experiments 

with different population sizes from 10 to 50 were made to 
show the speed-up trend of the proposed algorithm. The 
communication time was not considered. Note that by the 
genetic-fuzzy mining algorithm proposed in [17], the 
maximum number p of individuals to be evaluated in each 
generation was 2.6*r, where r is the number of individuals 
in a population. The experimental results are shown in 
Figure 4.  
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Figure 4: The experimental results for speed-up with 
transaction I/O time 

 It can be easily observed from the above figure that 
the speed-up increases nearly linearly along with the 
number of slave processors. The speed-up is also close to 
the number of slave processors. It is quite consistent with 
our analysis in Section 6. 

8 Conclusions 
 In this paper, we have proposed a parallel genetic-
fuzzy mining algorithm based on the master-slave 
architecture to extract both association rules and 
membership functions from quantitative transactions. The 
master and the slaves first cooperate to discover a set of 
suitable membership functions. The set of membership 
functions found is then used by the master processor to 
mine fuzzy association rules. The second phase is not 
necessary to be processed in parallel since the most time-
critical part lies in phase 1. The time complexities for both 
sequential and parallel genetic-fuzzy mining algorithm 
have been analyzed, with results showing the good effect of 
the proposed approach. When the number of generations is 
large, the speed-up can be nearly linear. The experimental 
results have also shown this point. Applying the master-
slave parallel architecture to speed up the genetic-fuzzy 
data mining algorithm is thus a feasible way to overcome 
the low-speed fitness evaluation problem of the original 
algorithm. 
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